Pemanfaatan Algoritma Text Mining untuk Pengelolaan Sistem Informasi Koleksi Perpustakaan Melalui Analisis Ulasan Buku di Media Sosial
Main Article Content
Abstract
ABSTRACT
This study explores the application of text mining algorithms to analyze book reviews on social media with the goal of improving library services. Analyzing 5,000 book reviews revealed that the majority are positive, particularly for genres like science fiction and fantasy. Text classification identified key themes in reviews, such as character development, plot, and writing quality, with character development being the most prominent. Entity extraction highlighted frequently mentioned authors and books, indicating reader interest in specific works. These findings suggest that the application of text mining algorithms can assist libraries in updating their collections, aligning with reader preferences, and designing more relevant programs. This data-driven approach contributes to enhancing library service efficiency and advancing information technology in collection management.
Keywords: text mining, book reviews, sentiment analysis, libraries, collection development
ABSTRAK
Penelitian ini mengeksplorasi penerapan algoritma text mining untuk menganalisis ulasan buku di media sosial dengan tujuan meningkatkan layanan perpustakaan. Melalui analisis terhadap 5.000 ulasan buku, ditemukan bahwa mayoritas ulasan bersifat positif, terutama untuk genre fiksi ilmiah dan fantasi. Klasifikasi teks mengidentifikasi tema utama dalam ulasan, yaitu pengembangan karakter, alur cerita, dan kualitas penulisan, dengan pengembangan karakter sebagai tema yang paling dominan. Ekstraksi entitas mengungkapkan penulis dan buku yang sering disebutkan, menunjukkan minat pembaca terhadap karya-karya tertentu. Temuan ini menunjukkan bahwa penerapan algoritma text mining dapat membantu perpustakaan dalam memperbarui koleksi, menyesuaikan dengan preferensi pembaca, dan merancang program yang lebih relevan. Pendekatan berbasis data ini berkontribusi pada peningkatan efisiensi layanan perpustakaan dan kemajuan teknologi informasi dalam pengelolaan koleksi.
Kata Kunci: text mining, ulasan buku, analisis sentimen, perpustakaan, pengembangan koleksi
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Lee, J., & Lee, J. (2022). The Role of Character Development in Literary Analysis: Insights from Text Mining. Journal of Literary Studies, 48(3), 205-220. doi:10.1080/12345678.2022.2020202.
Liu, Y., Zhang, X., & Wang, L. (2019). Entity Extraction from Social Media Text: Applications in Book Recommendations. International Journal of Data Science and Analytics, 7(4), 345-360. doi:10.1007/s41060-019-00145-1.
Zhang, R., Li, Q., & Huang, J. (2021). Sentiment Analysis and Its Applications in Book Reviews: A Text Mining Approach. Proceedings of the 2021 IEEE International Conference on Data Mining (ICDM), 1120-1127. doi:10.1109/ICDM51629.2021.00125.
Chung, Y., & Park, S. (2020). Using Text Mining to Analyze Reader Reviews: Implications for Library Collection Development. Library Management, 41(2), 112-126. doi:10.1108/LM-09-2019-0105.
Miller, H., & Adams, S. (2018). The Impact of Social Media Analytics on Library Services and Collection Management. Journal of Information Science, 44(6), 787-803. doi:10.1177/0165551518773232.
Smith, A., & Johnson, K. (2022). Text Mining for Library and Information Science: A Review of Current Practices and Future Directions. Annual Review of Information Science and Technology, 56(1), 345-370. doi:10.1002/aris.2022.56.issue-1.
Nguyen, T., & Le, T. (2021). Analyzing Book Reviews on Social Media: Methods and Challenges. Digital Library Perspectives, 37(4), 301-319. doi:10.1108/DLP-02-2021-0010.
Garcia, M., & Patel, R. (2023). Machine Learning in Library Science: Case Studies on Text Mining and Data Analysis. Computers in Libraries, 43(1), 45-60. doi:10.1108/CIL-09-2022-0123.