OPTIMIZATION OF LACCASE IMMOBILIZATION ON CHITOSAN BEADS USING THE CROSS-LINKING METHOD

Authors

  • Dhini Annisa Rahmasari Kanto a:1:{s:5:"en_US";s:26:"Poltekkes Kemenkes Bandung";}
  • Ai Fifih Lutfiah
  • Sopia Nurjihan

DOI:

https://doi.org/10.20414/spin.v7i1.11828

Keywords:

chitosan, cross-linking, glutaraldehyde, immobilization, laccase

Abstract

Limbah industri tekstil merupakan salah satu masalah utama lingkungan saat ini. Limbah tersebut mengandung residu pewarna dan berbagai senyawa kompleks. Lakase menjadi salah satu pilihan untuk degradasi biokatalitik zat warna karena biodegradabilitas dan biokompatibilitasnya. Pemanfaatan lakase untuk detoksifikasi polutan secara luas menjadi terbatas karena kerentanannya terhadap perubahan kondisi operasional. Untuk mengatasi masalah tersebut, lakase diimobilisasi pada kitosan dengan glutaraldehida sebagai agen pengikat silang. Penelitian ini dilakukan untuk menentukan kondisi optimum metode ikat silang dan imobilisasi lakase pada manik-manik kitosan. Pada penelitian ini, lakase dari Aspergillus sp. diimobilisasi pada butiran kitosan yang berikatan silang dengan glutaraldehida. Butiran kitosan dibuat dengan menggunakan kitosan 2% (b/v) dan diikat silang dengan glutaraldehida. Selanjutnya, butiran yang sudah teraktivasi glutaraldehida diinkubasi dengan lakase. Lakase yang terimobilisasi pada butiran kitosan diuji kadar protein dan aktivitasnya untuk memperoleh nilai efisiensi imobilisasi. Hasil penelitian menunjukkan bahwa konsentrasi glutaraldehida optimum adalah 0,8% dengan waktu ikat silang selama 6 jam, dosis lakase 0,4 mg/mL dan waktu imobilisasi selama 4 jam. Dari kondisi ini, didapatkan efisiensi imobilisasi sebesar 16,51% dengan aktivitas lakase sebesar 24,58 U/g. Berdasarkan karakterisasi gugus fungsi manik-manik kitosan terimobilisasi lakase, adanya puncak untuk gugus fungsi C=N mengkonfirmasi bahwa lakase telah terimobilisasi pada kitosan secara kovalen.

 

The textile industry is one of the significant environmental problems. The waste contains dye residues and various complex compounds. Laccase is a viable option for biocatalytic degradation due to its biodegradability and biocompatibility. The widespread use of laccase for pollutant detoxification is limited due to its susceptibility to changes in operational conditions. To overcome this problem, laccase was immobilized on chitosan with glutaraldehyde as a cross-linking agent. This research was conducted to determine the optimum conditions for the cross-linking method and laccase immobilization on chitosan beads. In this study, chitosan beads were developed using 2% (w/v) chitosan and cross-linked with glutaraldehyde. The activated chitosan beads were then incubated with laccase. The immobilized laccase was tested for its protein content and activity to obtain an immobilization efficiency value. The results showed that the optimum glutaraldehyde concentration was 0.8% with a cross-linking time of 6 hours, a laccase dose of 0,4 mg/mL, and an immobilization time of 4 hours. From these conditions, an immobilization efficiency of 16.51% was obtained with an enzyme activity of 24.58 U/g. Based on the functional group characterization of laccase-immobilized chitosan beads, the presence of the C=N functional group peak confirmed that laccase had been covalently immobilized on chitosan.

Downloads

Download data is not yet available.

References

Aricov, L., Ruxandra, A., Catalina, I., Preda, D., Raducan, A., & Anghel, D. (2020). Enhancement of laccase immobilization onto wet chitosan microspheres using an iterative protocol and its potential to remove micropollutants. Journal of Environmental Management, 276(September), 111326. https://doi.org/10.1016/j.jenvman.2020.111326

Aslam, S., Asgher, M., Ahmad, N., & Bilal, M. (2021). Immobilization of Pleurotus nebrodensis WC 850 laccase on glutaraldehyde cross-linked chitosan beads for enhanced biocatalytic degradation of textile dyes. Journal of Water Process Engineering, 40(February), 1,2. https://doi.org/10.1016/j.jwpe.2021.101971

Bilal, M., Iqbal, H. M. N., Shuqi, G., Hu, H., Wang, W., & Zhang, X. (2017). State-of-the-art protein engineering approaches using biological macromolecules: a review from immobilization to implementation view point. International Journal of Biological Macromolecules, 10. https://doi.org/10.1016/j.ijbiomac.2017.10.182

Bilal, M., & Iqbal, M. N. (2019). Naturally-derived biopolymers: Potential platforms for enzyme immobilization. International Journal of Biological Macromolecules, 130, 462–482. https://doi.org/10.1016/j.ijbiomac.2019.02.152

Bilal, M., Jing, Z., Zhao, Y., & Iqbal, M. N. (2019). Biocatalysis and agricultural biotechnology immobilization of fungal laccase on glutaraldehyde cross-linked chitosan beads and its bio-catalytic potential to degrade bisphenol A. Biocatalysis and Agricultural Biotechnology, 19(March), 2. https://doi.org/10.1016/j.bcab.2019.101174

Bilal M, Rasheed T, Zhao Y, Iqbal HMN, C. J. (2018). Smart chemistry and its application in peroxidase immobilization using different support materials. International Journal of Biological Macromolecules, 119. https://doi.org/10.1016/j.ijbiomac.2018.07.134

Cheng, Y., Wei, H., Sun, R., Tian, Z., & Zheng, X. (2016). Rapid Method for Protein Quantitation by Bradford Assay After Elimination of The Interference of Polysorbate. Analytical Biochemistry, 494, 37–39.

Halder, S. K., Maity, C., Jana, A., Ghosh, K., Das, A., Paul, T., Mohapatra, P. K. Das, Pati, B. R., & Mondal, K. C. (2014). Chitinases biosynthesis by immobilized Aeromonas hydrophila SBK1 by prawn shells valorization and application of enzyme cocktail for fungal protoplast preparation. Journal of Bioscience and Bioengineering, 117(2), 170–177. https://doi.org/10.1016/j.jbiosc.2013.07.011

Jaiswal, N., Pandey, V. P., & Dwivedi, U. N. (2016). Immobilization of papaya laccase in chitosan led to improved multipronged stability and dye discoloration. International Journal of Biological Macromolecules, 1(79), 1,20. https://doi.org/10.1016/j.ijbiomac.2016.01.079

Karigar, C. S., & Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: A Review. Enzyme Research, 2011, 1. https://doi.org/10.4061/2011/805187

Krajewska, B. (2004). Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 35(2–3), 126–139. https://doi.org/10.1016/j.enzmictec.2003.12.013

Mahargyani, W., Raharjo, T. J., & Haryadi, W. (2017). Imobilisasi lipase pada kitosan serbuk dengan metode pengikatan silang dan uji aktivitas transesterifikasinya. EduChemia (Jurnal Kimia Dan Pendidikan), 2(2), 196–210.

Morsi, R., Bilal, M., Iqbal, H. M. N., & Ashraf, S. S. (2020). Laccases and peroxidases: The smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Science of the Total Environment, 714. https://doi.org/10.1016/j.scitotenv.2020.136572

Pang, Y. L., & Abdullah, A. Z. (2013). Current status of textile industry wastewater management and research progress in Malaysia: A review. Clean - Soil, Air, Water, 41(8), 751–764. https://doi.org/10.1002/clen.201000318

Sathishkumar, P., Chae, J., Unnithan, A. R., Palvannan, T., Yong, H., Lee, K., Cho, M., Kamala-kannan, S., & Oh, B. (2012). Enzyme and Microbial Technology Laccase-poly (lactic- co -glycolic acid) (PLGA) nanofiber: Highly stable, reusable, and efficacious for the transformation of diclofenac. Enzyme and Microbial Technology, 51(2), 113–118. https://doi.org/10.1016/j.enzmictec.2012.05.001

Songulashvili, G., Ez-tob, G. A. J., Jaspers, C., Penninckx, M. J., & Songulashvili, G. (2012). Immobilized laccase of Cerrena unicolor for elimination of endocrine disruptor micropollutants. Fungal Biology, 6, 883–889. https://doi.org/10.1016/j.funbio.2012.05.005

Taha, A. A., Hameed, N. J., & Ali, F. H. (2020). Degradation of Anthracene by Immobilizing Laccase From Trametes Versicolor onto Chitosan Beads and Hyacinth Plant. Al-Mustansiriyah Journal of Science, 31(3), 14–20. https://doi.org/10.23851/mjs.v31i3.670

Tan, T., Lu, J., Nie, K., Deng, L., & Wang, F. (2010). Biodiesel production with immobilized lipase: A review. Biotechnology Advances, 28(5), 628–634. https://doi.org/10.1016/j.biotechadv.2010.05.012

Wesenberg, D., Kyriakides, I., & Agathos, S. N. (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances, 22, 161–187. https://doi.org/10.1016/j.biotechadv.2003.08.011

Xu, P., Zeng, G., Huang, D., Hu, S., Feng, C., Lai, C., Zhao, M., Huang, C., Li, N., Wei, Z., & Xie, G. (2013). Synthesis of iron oxide nanoparticles and their application in Phanerochaete chrysosporium immobilization for Pb (II) removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 419, 147–155. https://doi.org/10.1016/j.colsurfa.2012.10.061

Zheng, F., Cui, B. K., Wu, X. J., Meng, G., Liu, H. X., & Si, J. (2016). Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes. International Biodeterioration and Biodegradation, 110, 69–78. https://doi.org/10.1016/j.ibiod.2016.03.004

Downloads

Published

2025-07-10