Main Article Content
Abstract
Penelitian ini telah berhasil mensintesis material titanium dioksida dengan cara hidrotermal pada suhu 180oC pada lama reaksi 6 jam dan 12 jam. Morfologi SEM memperlihatkan bahwa titanium dioksida yang terbentuk berstruktur sphere (bulat) dengan rangkaian nanorods yang melingkupinya. Ukuran diameter microsphere dan diameter nanorods meningkat dengan bertambah lamanya waktu reaksi. Ukuran diameter microsphere berturut-turut untuk sampel 6 jam, 12 jam dan 20 jam yaitu 2,5 µm, 4 µm dan 5 µm dengan ukuran nanorods yaitu 21 nm, 38 nm, 42 nm. Hasil SEM menunjukkan bahwa sampel yang dihasilkan telah terdistribusi cukup merata dan ukuran cukup seragam. Hasil BET memperlihatkan luas permukaan sampel TiO2 6 jam dan TiO2 12 jam yaitu 20.537 m2/g, 21.336 m2/g dan 23.348 m2/g. Hal tersebut mengindikasikan dengan bertambahnya lama reaksi, luas permukaan material juga semakin meningkat.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Al-homoudi, I. A., Thakur, J. S., Naik, R., Auner, G. W., & Newaz, G. (2007). Anatase TiO2 Films Based CO Gas Sensor?: Film Thickness, Substrate and Temperature Effects. Applied Surface Science. 253 (21). 8607–14. https://doi.org/10.1016/j.apsusc.2007.04.068
- Binetti, E., Bazzanella, N., Comparelli, R., & Miotello, A. (2016). Electrophoretic Deposition of Colloidal TiO2 Nanorods Towards Nano-Porous Thin-Films. Materials Letters. 174(1). 226-229. https://doi.org/10.1016/j.matlet.2016.03.117
- Chen, N., Li, Y., Deng, D., Liu, X., Xing, X., Xiao, X., & Wang, Y. (2017). Acetone Sensing Performances Based on Nanoporous TiO2 Synthesized by a Facile Hydrothermal Method. Sensors & Actuators: B. Chemical 238. 491–500. https://doi.org/10.1016/j.snb.2016.07.094
- Guo-dong, S. H. I., Song Jun, Yang Liu-liu, and Zhang Li-xiong. 2014. “Hydrothermal Synthesis of Flower-like Hierarchical TiO2 Microspheres from Titanium Sulfate and Hexafluorosilicic Acid.” 29(8):891–96. doi: 10.15541/jim20140114.
- Lee, D. U., Jang, S. R, Vittal, R., Lee, J., & Kim, K. J. (2008). CTAB Facilitated Spherical Rutile TiO2 Particles and Their Advantage in a Dye-Sensitized Solar Cell. Solar Energy. 82(11):1042–48. https://doi.org/10.1016/j.solener.2008.04.006
- Liu, X., Sun, Q., Liu, F., Djurisic, A. B., Ching Ng, A. M., Xie, M., ….., & Shih, K. (2014). The Influence of TiO2 Nanostructure Properties on the Performance of TiO2 -Based Anodes in Lithium Ion Battery Applications. Turkish Journal of Physics. 38(3). 442–449. doi: 10.3906/fiz-1405-1.
- Sun, Z., Kim, J. H., Zhao, Y., Attard, D., & Dou, S. X. (2013). Morphology-Controllable 1D-3D Nanostructured TiO2 Bilayer Photoanodes for Dye-Sensitized Solar Cells. Chemical Communications. 49. 966–68. https://doi.org/10.1039/C2CC37212F
- Syuhada, N., B. Yuliarto, & Nugraha. (2018). Synthesis and Characterization Hierarchical Three-Dimensional TiO2 Structure via Hydrothermal Method. IOP Conference Series: Materials Science and Engineering 367(1). doi: 10.1088/1757-899X/367/1/012052.
- Syuhada, N., Yulianto, B., & Nugraha. (2020). Preparation and Application Porous TiO2 for SO2 Gas Sensor. Proceedings of the 2nd International Conference on Islam, Science and Technology (Iconist 2019):138–41. https://doi.org/10.2991/assehr.k.200220.025
- Venkatachalam, S., Hayashi, H., Ebina, T., & Nanjo, H. (2013). Preparation and Characterization of Nanostructured TiO2 Thin Films by Hydrothermal and Anodization Methods. InTech. doi: 10.5772/51254
- Vijayalakshmi, K., & Jereil, S. D. (2015). Enhanced Ethanol Sensing Performance of Fe?: TiO2 Nanowires and Their Mechanism of Sensing at Room Temperature. Ceramics International. 41(2). 3220–3226. https://doi.org/10.1016/j.ceramint.2014.11.007
- Wang, T., Li, W., Xu, D., Wu, X., Cao, L., & Meng, J. (2017). A Novel and Facile Synthesis of Black TiO2 with Improved Visible-Light Photocatalytic H2 Generation: Impact of Surface Modification with CTAB on Morphology, Structure and Property. Applied Surface Science. 426:325–332. https://doi.org/10.1016/j.apsusc.2017.07.153
- Wang, Y. L., Tan, S., Wang, J., Tan, Z, J., Wu, Q. X., Jiao, Z., & Wu, M. H. (2011). The Gas Sensing Properties of TiO2 Nanotubes Synthesized by Hydrothermal Method. Chinese Chemical Letters. 22(5). 603–606. https://doi.org/10.1016/j.cclet.2010.11.020
- Shi, W., Song, S., & Zhang, H. (2013). Hydrothermal Synthetic Strategies of Inorganic Semiconducting Nanostructures. Chemical Society Review. 42(13). 5714-5743. https://doi.org/10.1039/C3CS60012B
References
Al-homoudi, I. A., Thakur, J. S., Naik, R., Auner, G. W., & Newaz, G. (2007). Anatase TiO2 Films Based CO Gas Sensor?: Film Thickness, Substrate and Temperature Effects. Applied Surface Science. 253 (21). 8607–14. https://doi.org/10.1016/j.apsusc.2007.04.068
Binetti, E., Bazzanella, N., Comparelli, R., & Miotello, A. (2016). Electrophoretic Deposition of Colloidal TiO2 Nanorods Towards Nano-Porous Thin-Films. Materials Letters. 174(1). 226-229. https://doi.org/10.1016/j.matlet.2016.03.117
Chen, N., Li, Y., Deng, D., Liu, X., Xing, X., Xiao, X., & Wang, Y. (2017). Acetone Sensing Performances Based on Nanoporous TiO2 Synthesized by a Facile Hydrothermal Method. Sensors & Actuators: B. Chemical 238. 491–500. https://doi.org/10.1016/j.snb.2016.07.094
Guo-dong, S. H. I., Song Jun, Yang Liu-liu, and Zhang Li-xiong. 2014. “Hydrothermal Synthesis of Flower-like Hierarchical TiO2 Microspheres from Titanium Sulfate and Hexafluorosilicic Acid.” 29(8):891–96. doi: 10.15541/jim20140114.
Lee, D. U., Jang, S. R, Vittal, R., Lee, J., & Kim, K. J. (2008). CTAB Facilitated Spherical Rutile TiO2 Particles and Their Advantage in a Dye-Sensitized Solar Cell. Solar Energy. 82(11):1042–48. https://doi.org/10.1016/j.solener.2008.04.006
Liu, X., Sun, Q., Liu, F., Djurisic, A. B., Ching Ng, A. M., Xie, M., ….., & Shih, K. (2014). The Influence of TiO2 Nanostructure Properties on the Performance of TiO2 -Based Anodes in Lithium Ion Battery Applications. Turkish Journal of Physics. 38(3). 442–449. doi: 10.3906/fiz-1405-1.
Sun, Z., Kim, J. H., Zhao, Y., Attard, D., & Dou, S. X. (2013). Morphology-Controllable 1D-3D Nanostructured TiO2 Bilayer Photoanodes for Dye-Sensitized Solar Cells. Chemical Communications. 49. 966–68. https://doi.org/10.1039/C2CC37212F
Syuhada, N., B. Yuliarto, & Nugraha. (2018). Synthesis and Characterization Hierarchical Three-Dimensional TiO2 Structure via Hydrothermal Method. IOP Conference Series: Materials Science and Engineering 367(1). doi: 10.1088/1757-899X/367/1/012052.
Syuhada, N., Yulianto, B., & Nugraha. (2020). Preparation and Application Porous TiO2 for SO2 Gas Sensor. Proceedings of the 2nd International Conference on Islam, Science and Technology (Iconist 2019):138–41. https://doi.org/10.2991/assehr.k.200220.025
Venkatachalam, S., Hayashi, H., Ebina, T., & Nanjo, H. (2013). Preparation and Characterization of Nanostructured TiO2 Thin Films by Hydrothermal and Anodization Methods. InTech. doi: 10.5772/51254
Vijayalakshmi, K., & Jereil, S. D. (2015). Enhanced Ethanol Sensing Performance of Fe?: TiO2 Nanowires and Their Mechanism of Sensing at Room Temperature. Ceramics International. 41(2). 3220–3226. https://doi.org/10.1016/j.ceramint.2014.11.007
Wang, T., Li, W., Xu, D., Wu, X., Cao, L., & Meng, J. (2017). A Novel and Facile Synthesis of Black TiO2 with Improved Visible-Light Photocatalytic H2 Generation: Impact of Surface Modification with CTAB on Morphology, Structure and Property. Applied Surface Science. 426:325–332. https://doi.org/10.1016/j.apsusc.2017.07.153
Wang, Y. L., Tan, S., Wang, J., Tan, Z, J., Wu, Q. X., Jiao, Z., & Wu, M. H. (2011). The Gas Sensing Properties of TiO2 Nanotubes Synthesized by Hydrothermal Method. Chinese Chemical Letters. 22(5). 603–606. https://doi.org/10.1016/j.cclet.2010.11.020
Shi, W., Song, S., & Zhang, H. (2013). Hydrothermal Synthetic Strategies of Inorganic Semiconducting Nanostructures. Chemical Society Review. 42(13). 5714-5743. https://doi.org/10.1039/C3CS60012B