Main Article Content

Abstract

As an agricultural waste, rice husk is able to be produced as activated carbon due to its high cellulose content. This research aimed to determine the characteristics of activated carbon impregnated with zinc chloride (ZnCl2) solution at various concentrations. The activated carbon prepared from rice husk with ZnCl2 impregnation was investigated under soaking treatment. Soaking was carried out for 24 hours with ZnCl2 impregnation at various concentrations 10%, 20%, and 30%. Proximate analysis was performed on the three variations of activated carbon concentration. The best activated carbon was obtained by 30% ZnCl2 impregnation, where the moisture content was 5.08%, the ash content was 24.58%, the volatile matter content was 25.19%, and the fixed carbon content was 50.23%. Iodine number and amount of methylene blue adsorption were obtained at the maximum concentration of 30% ZnCl2 which are 631 mg/g and 322 ml/g. Impregnated activated carbon characterization test with FTIR has been carried out. The functional group is found in zinc chloride-impregnated activated carbon, consisting of OH stretching of hydroxyl groups at 3200-3600 cm-1, aromatic C=C vibrations at 1400-1600 cm-1, C=O vibration at 2300 cm-1, and C-O vibration at 1200 cm-1. Meanwhile, the absorption in band 1026 cm-1 corresponds to SiO2.

Keywords

rice husk impregnation activated carbon adsorption methylene blue

Article Details

Author Biographies

Arifah Sukasri, Politeknik Negeri Ujung Pandang

Dosen Asisten Ahli pada Jurusan Teknik Kimia, Politeknik Negeri Ujung Pandang

Ridhawati Thahir, Politeknik Negeri Ujung Pandang

Dosen Lektor pada Jurusan Teknik Kimia, Politeknik Negeri Ujung Pandang

M. Yasser, Politeknik Negeri Ujung Pandang

Dosen Lektor pada Jurusan Teknik Kimia, Politeknik Negeri Ujung Pandang

Jeanne Dewi Damayanti, Politeknik Negeri Ujung Pandang

Dosen Asisten Ahli pada Jurusan Teknik Kimia, Politeknik Negeri Ujung Pandang

M. Ilham Nurdin, Politeknik Negeri Ujung Pandang

Dosen Asisten Ahli pada Jurusan Teknik Kimia, Politeknik Negeri Ujung Pandang

How to Cite
Sukasri, A., Thahir, R., Yasser, M., Damayanti, J. D., & Nurdin, M. I. (2023). THE EFFECT OF IMPREGNATING SOLUTION CONCENTRATION ON THE CHARACTERISTIC OF ACTIVATED CARBON. SPIN JURNAL KIMIA & PENDIDIKAN KIMIA, 5(1), 156–165. https://doi.org/10.20414/spin.v5i1.7177

References

  1. Arneli, Safitri, Z. F., Pangestika, A. W., Fauziah, F., Wahyuningrum, V. N., & Astuti, Y. (2017). The influence of activating agents on the performance of rice husk-based carbon for sodium lauryl sulfate and chrome (Cr) metal adsorptions. IOP Conference Series: Materials Science and Engineering, 172(1). https://doi.org/10.1088/1757-899X/172/1/012007
  2. Febryanti, A., Wahab, A. W., & Maming. (2015). Potensi Arang Aktif Sekam Padi sebagai Adsorben Emisi Gas CO, NO dan NOX pada Kendaraan Bermotor. Jurnal Kimia FMIPA.
  3. Hanum, F., Bani, O., & Wirani, L. I. (2017). Characterization of activated carbon from rice husk by hcl activation and its application for lead (Pb) removal in car battery wastewater. IOP Conference Series: Materials Science and Engineering, 180(1). https://doi.org/10.1088/1757-899X/180/1/012151
  4. Heidarinejad, Z., Dehghani, M. H., Heidari, M., Javedan, G., Ali, I., & Sillanpää, M. (2020). Methods for preparation and activation of activated carbon: a review. In Environmental Chemistry Letters (Vol. 18, Issue 2). https://doi.org/10.1007/s10311-019-00955-0
  5. Hendrawan, Y., Sajidah, N., Umam, C., Fauzy, M. R., Wibisono, Y., & Hawa, L. C. (2019). Effect of Carbonization Temperature Variations and Activator Agent Types on Activated Carbon Characteristics of Sengon Wood Waste (Paraserianthes falcataria (L.) Nielsen). IOP Conference Series: Earth and Environmental Science, 239(1). https://doi.org/10.1088/1755-1315/239/1/012006
  6. Kaya, M., Azahin, Ö., & Saka, C. (2018). Preparation and TG/DTG, FT-IR, SEM, BET Surface Area, Iodine Number and Methylene Blue Number Analysis of Activated Carbon from Pistachio Shells by Chemical Activation. International Journal of Chemical Reactor Engineering, 16(2). https://doi.org/10.1515/ijcre-2017-0060
  7. Kusdarini, E., Budianto, A., & Ghafarunnisa, D. (2017). Produksi karbon aktif dari batubara bituminus dengan aktivasi tunggal H3PO4, Kombinasi H3PO4-NH4HCO3, dan termal. Reaktor, 17(2). https://doi.org/10.14710/reaktor.17.2.74-80
  8. Li, Y., Zhang, X., Yang, R., Li, G., & Hu, C. (2015). The role of H3PO4 in the preparation of activated carbon from NaOH-treated rice husk residue. RSC Advances, 5(41). https://doi.org/10.1039/c5ra04634c
  9. Liu, Q. S., Zheng, T., Wang, P., & Guo, L. (2010). Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Industrial Crops and Products, 31(2). https://doi.org/10.1016/j.indcrop.2009.10.011
  10. Machrouhi, A., Alilou, H., Farnane, M., El Hamidi, S., Sadiq, M., Abdennouri, M., Tounsadi, H., & Barka, N. (2019). Statistical optimization of activated carbon from Thapsia transtagana stems and dyes removal efficiency using central composite design. Journal of Science: Advanced Materials and Devices, 4(4). https://doi.org/10.1016/j.jsamd.2019.09.002
  11. Maulina, S., Handika, G., Irvan, & Iswanto, A. H. (2020). Quality comparison of activated carbon produced from oil palm fronds by chemical activation using sodium carbonate versus sodium chloride. Journal of the Korean Wood Science and Technology, 48(4). https://doi.org/10.5658/WOOD.2020.48.4.503
  12. Menya, E., Olupot, P. W., Storz, H., Lubwama, M., & Kiros, Y. (2018). Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review. In Chemical Engineering Research and Design (Vol. 129). https://doi.org/10.1016/j.cherd.2017.11.008
  13. Menya, E., Olupot, P. W., Storz, H., Lubwama, M., Kiros, Y., & John, M. J. (2020). Effect of alkaline pretreatment on the thermal behavior and chemical properties of rice husk varieties in relation to activated carbon production. Journal of Thermal Analysis and Calorimetry, 139(3). https://doi.org/10.1007/s10973-019-08553-6
  14. Muniandy, L., Adam, F., Mohamed, A. R., & Ng, E. P. (2014). The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous and Mesoporous Materials, 197. https://doi.org/10.1016/j.micromeso.2014.06.020
  15. Oko, S., Mustafa, Kurniawan, A., & Palulun, E. S. B. (2021). Pengaruh Suhu dan Konsentrasi Aktivator HCl terhadap Karakteristik Karbon Aktif dari Ampas Kopi. Metana: Media Komunikasi Rekayasa Proses Dan Teknologi Tepat Guna, 17(1).
  16. Sukasri, A., Ridhawati, R., Suharto, A., & Lestari, S. A. (2022). Effect of Zink Chloride Impregnation on the Characteristics of Porous Carbon from Rice Husk. Seminar Nasional Hasil Penelitian & Pengabdian Kepada Masyarakat (SNP2M), 153–158. http://118.98.121.208/index.php/snp2m/article/download/3907/3310
  17. Sukasri, A., Ridhawati, R., Yasser, M., Khatimah, M. H., & St Rabiatul Adwiah, M. (2021). Utilization of Rice Husk Waste As A Source Of Porous Carbon Material. Seminar Nasional Hasil Penelitian & Pengabdian Kepada Masyarakat (SNP2M), 76–81. http://jurnal.poliupg.ac.id/index.php/snp2m/article/download/3243/2775
  18. Tiwow, V. A., Rampe, M. J., Rampe, H. L., & Apita, A. (2021). Pola Inframerah Arang Tempurung Kelapa Hasil Pemurnian Menggunakan Asam. CHEMISTRY PROGRESS, 14(2), 116. https://doi.org/10.35799/cp.14.2.2021.37191
  19. Wazir, A. H., Wazir, I. U., & Wazir, A. M. (2020). Preparation and characterization of rice husk based physical activated carbon. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2020.1715512
  20. Yahya, M. A., Mansor, M. H., Zolkarnaini, W. A. A. W., Rusli, N. S., Aminuddin, A., Mohamad, K., Sabhan, F. A. M., Atik, A. A. A., & Ozair, L. N. (2018). A brief review on activated carbon derived from agriculture by-product. AIP Conference Proceedings, 1972. https://doi.org/10.1063/1.5041244
  21. Zhang, W., Lin, N., Liu, D., Xu, J., Sha, J., Yin, J., Tan, X., Yang, H., Lu, H., & Lin, H. (2017). Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications. Energy, 128. https://doi.org/10.1016/j.energy.2017.04.065
  22. Zhao, H., Zhong, H., Jiang, Y., Li, H., Tang, P., Li, D., & Feng, Y. (2022). Porous ZnCl2-Activated Carbon from Shaddock Peel: Methylene Blue Adsorption Behavior. Materials, 15(3). https://doi.org/10.3390/ma15030895