Main Article Content

Abstract

The problem of plastic waste is currently still the main trigger of environmental pollution, its nature that is not easily degraded will produce more waste. One alternative to overcome this problem is to reduce the use of conventional plastics and develop plastics that are more environmentally friendly or also known as bioplastics. In this study, bioplastics made from taro tuber starch with the addition of bagasse cellulose filler were varied based on the type of plasticizer in the form of glycerol, sorbitol, and propylene glycol. The resulting bioplastics were characterized by FTIR analysis, tensile strength test, TGA test, and water absorption test. The process began with cellulose isolation from sugarcane bagasse which obtained a yield of 24.27%, then taro tuber starch extraction with a yield of 27.87%. The results of the FTIR spectrum of bioplastics did not show significant differences in the absorption of wave numbers for each variation of plasticizer types. The functional groups seen from the FTIR results are O-H, C-H, and C-O groups. Bioplastics with the addition of propylene glycol plasticizer have a high tensile strength value of 23.26 Mpa, good thermal resistance with a mass reduction of 75.89%, and an optimum absorption capacity of 29.4%. In future research, it is necessary to vary the concentration of each type of plasticizer and conduct a simple degradation test

Keywords

bioplastics cellulose plasticizer starch

Article Details

How to Cite
Sari, S. A. P., Asriza, R. O. ., & Adisyahputra. (2023). THE INFLUENCE OF PLASTICIZER TYPE ON THE CHARACTERISTICS OF BIOPLASTICS MADE FROM TARO TUBER STARCH (Colocasia esculenta (L.) Schott) WITH THE ADDITION OF CANE DRAGUE CELLULOSE. SPIN JURNAL KIMIA & PENDIDIKAN KIMIA, 5(2), 285–295. https://doi.org/10.20414/spin.v5i2.8211

References

  1. Adryani, R., Maulida. (2014). Pengaruh Ukuran Partikel dan Komposisi Abu Sekam Padi Hitam Terhadap Sifat Kekuatan Tarik Komposit Poliester Tidak Jenuh. Jurnal Teknik Kimia USU, 3 (4). 31-36. https://doi.org/10.32734/jtk.v3i4.1653
  2. Afif, M.N., Wijayanti, & S. Mursiti. (2018). Pembuatan Bioplastik dari Pati Biji Alpukat-Kitosan dengan Plasticiser Sorbitol. Indonesia Journal of Chemical Science, 7(2). 102-109. https://doi.org/10.15294/ijcs.v7i2.20810
  3. Al Fath, M.T., Maulida, L., Ghendis, E.A., & Nisaul, F.D. (2022). Pengaruh Selulosa Nanokristal dari Serat Buah Kelapa Sawit sebagai Pengisi dan Kalium Klorida sebagai Agen Pendispersi Terhadap Sifat Fisik Bioplastik Berbasis Pati Biji Alpukat (Persea americana). Jurnal Teknik Kimia USU, 11(2). 89-94. https://doi.org/10.32734/jtk.v11i2.9239
  4. Amien, N. A. (2013). Pengaruh Suhu Fosforilasi terhadap Sifat Fisikokimia Pati Tapioka Termodifikasi. Program Studi Ilmu dan Teknologi Pangan, Fakultas Pertania, Makassar: Universitas Hasanuddin.
  5. Badan Pusat Statistik. (2019). Statistik Lingkungan Hidup Indonesia 2019. Jakarta: Badan Pusat Statistik.
  6. Budianto, A., Ayu, D. F., & Johan, V. S. (2019). Pemanfaatan Pati Kulit Ubi Kayu dan Selulosa Kulit Kacang Tanah pada Pembuatan Plastik Biodegradable. Sagu, 1(1). 11-18. http://dx.doi.org/10.31258/sagu.v18i2.7868
  7. Coniwanti, P., L. Laila, & M. R. Alfira. (2014). Pembuatan Film Plastik Bioedgradable dari Pati Jagung Dengan Penambahan Kitosan dan Pemlastis Gliserol. Jurnal Teknik Kimia, 20(4). 22-30.
  8. Darni, Y., Sitorus, T. M., & Hanif, M. (2014). Produksi Bioplastik dari Sorgum dan Selulosa Secara. Jurnal Rekayasa Kimia dan Lingkungan, 10(2). 55–62. https://doi.org/10.23955/rkl.v10i2.2420
  9. Gabhane, J., Kumar, S., & Sarma, A. K. (2020). Effect of Glycerol Thermal and Hydrothermal Pretreatments on Lignin Degradation and Enzymatic Hydrolysis in Paddy Straw. Renewable Energy, 154(4). 1304–1313. https://doi.org/10.1016/j.renene.2020.03.035
  10. Gea, S., Agrista, I. D., Zuhra, C. F. (2018). Sintesis Nanoserat Selulosa dari Tandan Kosong Sawit (Tks) dengan Menggunakan Metode Tetramethyl Piperidine 1 Oxyl (TEMPO). TALENTA Conference Series: Science & Technology, 2(1). 1-8. https://doi.org/10.32734/st.v2i1.307
  11. Haafiz, M. K. M., Eichhorn, S. J., Hassan, A., & Jawaid, M. (2013). Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydrate Polymers, 93(2). 628–634. https://doi.org/10.1016/j.carbpol.2013.01.035
  12. Hasan, M., Rusman, & Hanum, L. (2013). Rekayasa Bioplastik untuk Kemasan Makanan dari Khitosan Limbah Kulit Udang dan Pati Tapioka, dengan Minyak Kelapa Sawit Sebagai Pemlastis. Jurnal Purifikasi, 11(2). 171 – 176. https://doi.org/10.12962/j25983806.v11.i2.197
  13. Indriani, D.W., Sugiarto, Y., & Hawa, L. C. (2020). Analisis Fisikokimia Chip dan Tepung Talas (Colocasia esculenta) pada Perlakuan Kadar Air dan Kecepatan Penggilingan. Jurnal Keteknikan Pertanian Tropis dan Biosistem, 8(3). 208-216. https://doi.org/10.21776/ub.jkptb.2020.008.03.02
  14. Krisnadi, R., Handarni, Y., & Udyani, K. (2019). Pengaruh Jenis Plasticizer Terhadap Karakteristik Plastik Biodegradable dari Bekatul Padi. Jurnal Teknik Kimia, 1(1). 125-130.
  15. Kusumastuti, H., Trisunaryanti, W., Falah, I. I., & Marsuki, M. F. (2018). Synthesis of Mesoporous Silica?Alumina from Lapindo Mud Using Gelatin from Catfish Bone as a Template?: Effect of Extracting Temperature on Yield and Characteristic of Gelatin as well as Mesoporous Silica?Alumina, In, 15th International Conference on Environmental Science and Technology. http://dx.doi.org/10.31788/RJC.2018.1122061
  16. Ningrum, U. A. (2018). Sintesis Selulosa Sitrat dari Selulosa Ampas Tebu (Saccharum officinarum L.) Melalui Reaksi Esterifikasi dengan Asam Sitrat sebagai Adsorben Ion Seng (Zn2+) pada Limbah Industri Sarung Tangan Karet. (Skripsi). Universitas Sumatera Utara, Medan.
  17. Pubra, D. M., Harsojuwono, B. A., & Hartiati, A. (2019). Pengaruh Jenis dan Konsentrasi Plasticizer Terhadap Karakteristik Bioplastik Maizena. IPTEKMA: Jurmal Mahasiswa Universitas Udayana, 8(2). 67-74.
  18. Sari, D. R., & Ariani. (2021). Pengolahan Tempurung Kelapa Menjadi Arang dan Asap Cair dengan Metode Semi-Batch Pyrolysis. Distilat, 7(2). 367-372. https://doi.org/10.33795/distilat.v7i2.236
  19. Seligra, P. G., Jaramilo, C. M., Fama, L., & Goyanes, S. (2016). Data of Thermal Degradation and Dynamic Mechanical Properties of Starch-Glycerol Based Films with Citric Acid as Crosslinking Agent. Data in Brief, 7(1). 1331–1334. https://doi.org/10.1016/j.dib.2016.04.012
  20. Septiosari, A., Latifah, & Ella, K. (2014). Pembuatan dan Karakterisasi Bioplastik Limbah Biji Mangga dengan Penambahan Selulosa dan Gliserol. Indonesian Journal of Chemical Science, 3(2). 158-162.
  21. Setiawan, H., Faizal, R., & Amrullah, A. (2015). Penentuan Kondisi Optimum Modifikasi Konsentrasi Plasticizer Sorbitol PVA Pada Sintesa Plastik Biodegradable Berbahan Dasar Pati Sorgum dan Kitosan Limbah Kulit Udang. J.Sains dan Teknologi, 13(1). 29-38. https://doi.org/10.15294/sainteknol.v13i1.5333
  22. Sinaga, R. F., Ginting, G. M., Ginting, M. H. S., & Hasibuan, R. (2014). Pengaruh Penambahan Gliserol Terhadap Sifat Kekuatan Tarik dan Pemanjangan Saat Putus Bioplastik dari Pati Umbi Talas. Jurnal Teknik Kimia USU, 3(2). 19-24. https://doi.org/10.32734/jtk.v3i2.1608
  23. Situmorang, F. U., A. Hartiati, & B. A Harsojuwono. (2019). Pengaruh Konsentrasi Pati Ubi Talas (Colocasia Esculenta) dan Jenis Pemlastis terhadap Karakteristik Bioplastik. Jurnal Rekayasa dan Manajemen Agroindustri. 7(3). 457-467.
  24. Thakur, V. K., & Thakur, M. K, (2014). Processing and Characterization of Natural Cellulose Fiber/Thermoset Polymer Composite, Charbohyd Polym, 109, pp. 102–117. https://doi.org/10.1016/j.carbpol.2014.03.039
  25. Utami, M. R., & Widiarti, N. (2014). Sintesis Plastik Biodegradable dari Kulit Pisang dengan Penambahan Kitosan dan Plasticizer Gliserol. Indonesian Journal of Chemical Science, 3(2). 1-5.