Main Article Content

Abstract

Larutan elektrolit sangat berperan penting sebagai media transfer ion pada baterai. Transfer ion pada antar muka elektrolit dan elektroda dapat menentukan energi desolvasi dan konduktivitas ion. Tujuan penilitian ini adalah untuk mengetahui pengaruh variasi pelarut organik terhadap energi desolvasi lepasnya pelarut organik.  Penelitian ini menggunakan lima pelarut elektrolit organik yaitu Adiponitrile (APN), Acetonitrile (ATN), Butylene Carbonate (BC), Diethyl Carbonate (DEC), dan 1,4-Dioxa­ne (DIO). Parameter yang diamati adalah energi desolvasi menggunakan metode DFTB dengan program Dcdftbmd. Hasil analisis data twoway ANOVA diperoleh signifikansi kurang dari 0,05 dan Ha diterima yang berarti bahwa ada perbedaan yang nyata pada jenis pelarut elektrolit organik terhadap energi desolvasi. Untuk uji lanjut Post Hoc diperoleh bahwa terdapat perbedaan secara signifikan. Berdasarkan parameter yang diamati, dapat disimpulkan bahwa kelima jenis pelarut elektrolit organik memiliki pengaruh terhadap energi desolvasi. Energi desolvasi masing-masing pelarut organik cenderung meningkat seiring dengan semakin banyaknya pelarut organik yang lepas ikatannya dengan Natrium.


 


ABSTRACT


Electrolyte is very important as an ion transfer medium in battery. Ion transfer at the interface between electrolyte and electrode can determine desolvation energy and ion conductivity. The aims of this study is to determine the effect of variations in organic solvent on desolvation energy of organic solvent. In this study, we were used five organic electrolyte solvents namely Adiponitrile (APN), Acetonitrile (ATN), Butylene Carbonate (BC), Diethyl Carbonate (DEC), and 1,4-Dioxa­ne (DIO). The parameter observed were desolvation energy using DFTB method with the Dcdftbmd program. The result of two way ANOVA data analysis obtained a significance of less than 0.05 and Ha was accepted, which means that there is significant difference between the type of organic electrolyte solvent and the desolvation energy. For the Post Hoc test, it was found that there was a significant difference. Based parameter observed, the five organic solvents have an influence on the desolvation energy. Each desolvation energy of organic solvents tends to increase along with the increasing number of organic solvents released of bond with Sodium.

Keywords

DFTB energi desolvasi pelarut elektrolit organik

Article Details

References

  1. Abe, T., Sagane, F., Ohtsuka, M., Iriyama, Y., & Ogumi, Z. (2005). Lithium-Ion Transfer at the Interface Between Lithium-Ion Conductive Ceramic Electrolyte and Liquid Electrolyte-A Key to Enhancing the Rate Capability of Lithium-Ion Batteries. Journal of The Electrochemical Society. 152(11). A2151-A2154.
  2. Abe, T., Fukuda, H., Iriyama, Y., & Ogumi, Z. (2004). Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte. Journal of The Electrochemical Society. 151(8). A1120-A1123.
  3. Bekaert, E., Buannic, L., Lassi, U., Llordes, A., & Salminen, J. (2017). Emerging Nanotechnologies in Rechargeable Energy Storage System. Boston: Elsevier.
  4. Chen, D. (2012). Microscopic Investigations of Degradation in Lithium-Ion Batteries. (Disertation). Karlsruher Institut für Technologie. German.
  5. Chen, J., Peng, Y., Yin, Y., Fang, Z., Cao, Y., Wang., Y., Dong, X., & Xia, Y. (2021). A Desolvation-Free Sodium Dual-Ion Chemistry for High Power Density and Extremely Low Temperature,” Angew. Chem. Int. 60(44). 23858-23862. https://doi.org/10.1002/anie.202110501
  6. Chou, C. P., Sakti, A. W., Nishimura, Y., & Nakai, H. (2018). Development of Divide-and-Conquer Density-Functional Tight-Binding Method for Theoretical Research on Li-ion Battery. The Chemical Record. 18. 1-13. https://doi.org/10.1002/tcr.201800141
  7. Chris Swain., “Solvation and Desolvation,” dalam https://www.cambridgemedchemconsulting.com/resources/solvation.html, diakses tanggal 12 April 2022, pukul 20.20.
  8. Ein-Eli, Y., Mcdevitt, S. F., Aurbach, D., Markovsky, B., & Schechter, A. (1997). Methyl Propyl Carbonate: A Promising Single Solvent for Li-Ion Battery Electrolyte. Journal of The Electrochemical Society. 144(7). 181. https://doi.org/10.1149/1.1837792
  9. Huang, Y., Zhao, L., Li, L., Xie, M., Wu., F., & Chen, R. Electrolytes and Electrolyte/Electrode Interfaces in Sodium Ion Batteries: From Scientific Research to Practical Application. Advanced Materials. 31(21). 1-41. https://doi.org/10.1002/adma.201808393
  10. Levine, IN. (2008). Physical Chemistry, Sixth Edition. New York: McGraw-Hill.
  11. Mukaromah, I. (2021). Analisis Elektrolit NaTFSA Pada Baterai Ion Natrium Dengan Metode DC-DFTB-MD. (Skripsi). Insitut Pertanian Bogor. Bogor.
  12. Multazam. (2014). Analisa Kinerja Charge/Discharge Membran Polimer Elektrolit Kitosan-Litium Pada Baterai Rechargeable. (Tesis). Insitut Teknologi Bandung. Bandung.
  13. Nakai Group. (2019). Divide and Conquer Density Functional Tight-Binding Moelcular Dynamics User Manual. Japan: Waseda University.
  14. Okoshi, M., Yamada, Y., Yamada, A., & Nakai, H. (2013). Theoretical Analysis on De-Solvation of Lithium, Sodium, and Magnesium Cations to Organic Electrolyte Solvents. Journal of The Electrochemical Society. 160 (11). A2160-A2165. https://doi.org/10.1149/2.074311jes
  15. Okoshi, M., Yamada, Y., Komaba, S., Yamada, A., & Nakai, H. (2016). Theoretical Analysis of Interactions between Potassium Ions and Organic Electrolyte Solvents: A Comparison with Lithium, Sodium, and Magnesium Ions. Journal of The Electrochemical Society. 164(2). A54-A60. https://doi.org/10.1149/2.0211702jes
  16. Oliveira, A. F., Seifert, G., Heine, T., & Duarte, H. A. (2009). Density-Functional Based Tight-Binding: An Approximate DFT Method. Journal of the Brazilian Chemical Society. 20 (7). 1193–1205. https://doi.org/10.1590/S0103-50532009000700002
  17. Pranowo, HD. (2011). Pengantar Kimia Komputasi. Bandung: CV. Lubuk Agung.
  18. Putri, P. V. P., Susanti, N. M. P., & Laksmiani, N. P. L. (2019). Senyawa Kuersetin Sebagai Agen Antikanker Kolorektal Secara in Silico. Jurnal Kimia (Journal of Chemistry). 13 (2). 166-171. https://doi.org/10.24843/JCHEM.2019.v13.i02.p07
  19. Sakti, A. W., Nishimura, Y., Chou, C. P., & Nakai, H. (2018). Density-Functional Tight-Binding Molecular Dynamics Simulations of Excess Proton Diffusion in Ice Ih, Ice Ic, Ice III, and Melted Ice VI Phases. The Journal of Physical Chemistry. 122(1). 33-40. https://doi.org/10.1021/acs.jpca.7b10664
  20. Sakti, A. W., Chou, C. P., & Nakai, H. (2020). Density-Functional Tight-Binding Study of Carbonaceous Species Di usion on the (100)-?-Al2O3 Surface. ACS Omega. 5(12). 6862-6871. https://doi.org/10.1021/acsomega.0c00203
  21. Sugiyono. (2008). Metode Penelitian Pendidikan Pendekatan Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta.
  22. Yamada, Y. (2020). Concentrated Battery Electrolytes: Developing New Functions by Manipulating the Coordination States. Bulletin of the Chemical Society of Japan. 93(1). 109–118. https://doi.org/10.1246/bcsj.20190314

Most read articles by the same author(s)